Saturday, January 15, 2011

Java interview questions and answers

Describe what happens when an object is created in Java?
Several things happen in a particular order to ensure the object is constructed properly:
1. Memory is allocated from heap to hold all instance variables and implementation-specific data of the object and its superclasses. Implementation-specific data includes pointers to class and method data.
2. The instance variables of the objects are initialized to their default values.
3. The constructor for the most derived class is invoked. The first thing a constructor does is call the constructor for its uppercase. This process continues until the constructor for java.lang.Object is called, as java.lang.Object is the base class for all objects in java.
4. Before the body of the constructor is executed, all instance variable initializers and initialization blocks are executed. Then the body of the constructor is executed. Thus, the constructor for the base class completes first and constructor for the most derived class completes last.

In Java, you can create a String object as below : String str = "abc"; & String str = new String("abc"); Why cant a button object be created as : Button bt = "abc"? Why is it compulsory to create a button object as: Button bt = new Button("abc"); Why this is not compulsory in String’s case?
Button bt1= "abc"; It is because "abc" is a literal string (something slightly different than a String object, by-the-way) and bt1 is a Button object. That simple. The only object in Java that can be assigned a literal String is java.lang.String. Important to not that you are NOT calling a java.lang.String constuctor when you type String s = "abc"; For example String x = "abc"; String y = "abc"; refer to the same object. While String x1 = new String("abc");
String x2 = new String("abc"); refer to two different objects.

What is the advantage of OOP?
You will get varying answers to this question depending on whom you ask. Major advantages of OOP are:
1. Simplicity: software objects model real world objects, so the complexity is reduced and the program structure is very clear;
2. Modularity: each object forms a separate entity whose internal workings are decoupled from other parts of the system;
3. Modifiability: it is easy to make minor changes in the data representation or the procedures in an OO program. Changes inside a class do not affect any other part of a program, since the only public interface that the external world has to a class is through the use of methods;
4. Extensibility: adding new features or responding to changing operating environments can be solved by introducing a few new objects and modifying some existing ones;
5. Maintainability: objects can be maintained separately, making locating and fixing problems easier;
6. Re-usability: objects can be reused in different programs

What are the main differences between Java and C++?
Everything is an object in Java( Single root hierarchy as everything gets derived from java.lang.Object). Java does not have all the complicated aspects of C++ ( For ex: Pointers, templates, unions, operator overloading, structures etc..) The Java language promoters initially said "No pointers!", but when many programmers questioned how you can work without pointers, the promoters began saying "Restricted pointers." You can make up your mind whether it’s really a pointer or not. In any event, there’s no pointer arithmetic. There are no destructors in Java. (automatic garbage collection), Java does not support conditional compile (#ifdef/#ifndef type). Thread support is built into java but not in C++. Java does not support default arguments. There’s no scope resolution operator :: in Java. Java uses the dot for everything, but can get away with it since you can define elements only within a class. Even the method definitions must always occur within a class, so there is no need for scope resolution there either. There’s no "goto " statement in Java. Java doesn’t provide multiple inheritance (MI), at least not in the same sense that C++ does. Exception handling in Java is different because there are no destructors. Java has method overloading, but no operator overloading. The String class does use the + and += operators to concatenate strings and String expressions use automatic type conversion, but that’s a special built-in case. Java is interpreted for the most part and hence platform independent

What are interfaces?
Interfaces provide more sophisticated ways to organize and control the objects in your system.
The interface keyword takes the abstract concept one step further. You could think of it as a “pure” abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but The interface keyword takes the abstract concept one step further. You could think of it as a “pure” abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but an interface says: “This is what all classes that implement this particular interface will look like.” Thus, any code that uses a particular interface knows what methods might be called for that interface, and that’s all. So the interface is used to establish a “protocol” between classes. (Some object-oriented programming languages have a keyword called protocol to do the same thing.) Typical example from "Thinking in Java":
import java.util.*;
interface Instrument {
int i = 5; // static & final
// Cannot have method definitions:
void play(); // Automatically public
String what();
void adjust();
}
class Wind implements Instrument {
public void play() {
System.out.println("Wind.play()");
public String what() { return "Wind"; }
public void adjust() {}
}

How can you achieve Multiple Inheritance in Java?
Java’s interface mechanism can be used to implement multiple inheritance, with one important difference from c++ way of doing MI: the inherited interfaces must be abstract. This obviates the need to choose between different implementations, as with interfaces there are no implementations.
interface CanFight {
void fight();
interface CanSwim {
void swim();
interface CanFly {
void fly();
class ActionCharacter {
public void fight() {}
class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {
public void swim() {}
public void fly() {}
}
You can even achieve a form of multiple inheritance where you can use the *functionality* of classes rather than just the interface:
interface A {
void methodA();
}
class AImpl implements A {
void methodA() { //do stuff }
}
interface B {
void methodB();
}
class BImpl implements B {
void methodB() { //do stuff }
}
class Multiple implements A, B {
private A a = new A();
private B b = new B();
void methodA() { a.methodA(); }
void methodB() { b.methodB(); }
}
This completely solves the traditional problems of multiple inheritance in C++ where name clashes occur between multiple base classes. The coder of the derived class will have to explicitly resolve any clashes. Don’t you hate people who point out minor typos? Everything in the previous example is correct, except you need to instantiate an AImpl and BImpl. So class Multiple would look like this:
class Multiple implements A, B {
private A a = new AImpl();
private B b = new BImpl();
void methodA() { a.methodA(); }
void methodB() { b.methodB(); }
}

No comments: